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ABSTRACT 

Laboratory tests conducted  to determine the effects of wave groups on rubble 

mound breakwater  stability are analyzed.   A literature review outlining the controversy 

regarding whether or not wave groups effect breakwater  stability is given.  Resolution  of 

this controversy is proposed  using two independent   parameters   that characterize  wave 

groups.   The two parameters   are an envelope exceedance coefficient a and spectral 

shape 7. The incident time series must be known to compute a, and an algorithm is 

given that will resolve incident and reflected wave time series from closely spaced wave 

gauges.   The digital to analog simulation of laboratory waves with specified wave group 

characteristics  is reviewed.   It is recommended   that further studies be conducted  to 

parameterize   the envelope exceedance coefficient a with a non-biased  groupiness factor. 
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INTRODUCTION 

The design of rubble mound breakwaters is one of the oldest and most common 

applications  of coastal engineering methodologies.    Design of rubble mound structures is 

most commonly based on the empirical methods presented  in the Shore Protection 

Manual (SPM 1984).  Due to some failures of structures designed with the SPM 

methodology, an effort to improve the SPM design methodology is undertaken.    The 

design methodology presented  in the SPM is based on empirical formulas developed 

from experiments with monochromatic  waves.  Most of the more recently proposed 

design criteria are based on laboratory experiments using irregular waves.  The effects of 

spectral shape and wave grouping will be targeted.   As a proposed improvement,   factors 

such as permeability, wave period, and storm duration may have secondary effects on 

rubble mound breakwater  stability. 

It has been well-documented   that waves in random seas tend to form groups not 

accounted  for by the purely Gaussian random wave model.   Many of the coastal 

engineering problems associated  with wave groups have been documented  by Medina 

and Hudspeth  (1990).  In the last two decades, controversy has arisen as to whether 

spectra composed of grouped waves cause different levels of damage to rubble mound 

structures than spectra of ungrouped waves.  Medina et al. (1990) have found that most 

of the controversy may be resolved if two independent   spectral related parameters  are 

chosen to characterize  the wave groups (Mase and Iwagaki 1986).  One parameter 

characterizes  the length of wave groups and the other characterizes  the magnitude of the 
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energy flux in a group of waves. 

Intermediate   scale laboratory studies to determine if wave groups affect rubble 

mound breakwater stability were performed in the 2-dimensional wave channel at the 0. 

H. Hindsdale Wave Research Facility (OHH-WRF)   at Oregon State University.   In 

order to determine the effects of wave groups on rubble mound structures, sea states 

with identical amplitude spectra but different wave group characteristics were simulated. 

The resolution of incident and reflected wave time series from the random wave 

simulation is required in order to evaluate the effects of wave groups.   In order to 

quantify the two wave group characteristics proposed by Mase and Iwagaki (1986), the 

incident time series must be known.  Medina et al. (1994) used a method developed by 

Kimura (1985) and Fassardi (1993) that extends an algorithm proposed by Goda and 

Suzuki (1976) to resolve the incident and reflected wave time series from closely spaced 

wave gauges. 



* a 

CHAPTER I:   Correlation of Wave Groups with Armor Damage 

Carstens, et al. (1967), first observed the effect of wave groups on breakwater 

damage when he analyzed two time series with significantly different groupiness, but 

similar spectra and wave statistics.   The time series with the more grouped waves, taken 

from a field site in the Barents Sea, created  more damage than the time series generated 

from the theoretical  Neumann-spectrum.    Johnson, et al. (1978), as a result of their 

laboratory studies on the effects of wave grouping on breakwater  stability, concluded that 

wave grouping was an essential parameter  in the model testing of rubble mound 

breakwater  stability.   Wave trains with similar spectra and wave statistics, but different 

groupiness, caused significantly different levels of damage, the greater damage being 

caused by the grouped wave trains.   Burcharth  (1979) also concluded that wave grouping, 

or the succession of the waves, is important in model design. 

Since the energy spectrum does not contain the phases of the individual wave 

components  in the sea surface it is necessary to also resolve the phases of the individual 

wave components  to reproduce an accurate succession of wave heights (Rye 1982).  In 

his summary of breakwater design, Bruun (1989) recorded  that the resolution of the 

phase spectrum identified apparent  order where none is assumed in the Gaussian 

random wave model.   He concluded  that these ordered  wave groups are more damaging 

than other waves. 

In contrast, van der Meer (1988) found that the spectral shape and grouping of 

waves had little or no influence on the stability of breakwater armor layers provided that 



the average spectral period was used to simulate the sea state rather than the peak 

period.   Hall (1994), in a study on bermed breakwaters, concluded that wave groups are 

only important  during the stage of incipient motion, and that once motion is initiated 

wave groupiness is no longer important. 

Medina et al. (1990) found that much of the controversy could be resolved if the 

two independent   parameters  of wave groups proposed by Mase and Iwagaki (1986) were 

considered.   One parameter  measures the run length or the number of high waves in a 

time series, and a second parameter   quantifies the magnitude of the variation of wave 

energy.   In their laboratory tests, Medina et al. (1990) tested four different wave height 

time series proposed  by Mase and Iwagaki (1986) shown in Figure 1.1, while keeping 

other secondary factors that affect breakwater stability constant. 
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Figure 1.1 - Classification of wave height time series (Fassardi 1993) 



Figure 1.1 shows that identical spectra may have different magnitudes of wave height 

variability, which may cause different levels of damage.   Likewise, different spectra may 

have the same magnitude of wave height variability, and thus cause the same level of 

damage.   Medina et al. (1990) simulated truncated  Goda-JONSWAP   spectra with 

different run lengths and different magnitudes of variation of wave energy according to 

Appendix B. 

Medina et al. (1990) concluded that the spectral shape and run length alone were 

not sufficient parameters  to accurately describe wave groupiness, but that another 

parameter  that measured  the variation of wave energy more completely described the 

wave group.   Medina et al. (1990) correlated  an envelope exceedance coefficient a that 

measures the variation of wave energy with stability, and demonstrated   that random 

wave trains with the same spectral shape may produce different levels of damage. 

Medina et al. (1994) found no significant correlation between the spectral peakedness  y 

and armor damage, but concluded that the envelope exceedance coefficient a was 

necessary to evaluate the effects of random waves on structures in both physical and 

prototypical models. 



CHAPTER II:  Derivation of Envelope Exceedance Coefficient a 

From their analysis of storm waves, Mase and Iwagaki (1986) recommended   using 

at least two parameters   to quantify wave groups, one parameter   that measures the 

magnitude of a sequence of high waves in a time series, and a second parameter  that 

measures the magnitude of the variation of wave energy.   Both parameters   are shown 

schematically in Figure 2.1, where A(x,t) is the wave envelope function from the Hubert 

transform defined by Medina and Hudspeth   (1990). 

run length is a meaure of the number of high waves in a group 

= measure of the magnitude of the variation of wave height 

Figure 2.1 - Wave group parameters 



The peak enhancement   factor 7 of the Goda-JONSWAP   spectrum (Goda  1985) 

controls the sharpness of the spectral peak and was selected to characterize  the 

magnitude of the sequence of high waves in the time series.   Rye (1980) related the 

magnitude of the sequence of high waves, run length, to the peak enhancement   factor 7 

of the JONS WAP spectrum.   The coefficient a was selected to characterize  the 

magnitude of variation of wave energy.  The envelope exceedance coefficient a is a 

dimensionless measure of the wave energy exceeding that associated with a prescribed 

wave height; e. g.,H1/10. 

In a two dimensional wave channel, the wave height function H(x,t) is defined by 

H(x,t)= 2A(x,t) t2-1) 

If At = a constant sampling time interval, the discrete wave height function at a fixed 

location may be expressed as H(nAt).   Defining a normalized measure of the variation of 

wave height as 

AH - H(nAt) - 1 (2.2) 
"1/10 

and the Heaviside step function (Farlow 1982) of AHn as 

f 0     AH <0 n ox 
u(AH

n) = {i AH> ; (2-3) 

then the magnitude of the variation of wave energy above H1/10 of the time series is given 

as 



1 N 

«'"IE (AHJ2U(AH) 
Nn=l 

(2.4) 

where N is the number of discrete data points in the time series.   Normalizing Eq. (2.4) 

by the expected value of a' yields the envelope exceedance coefficient a defined as 

(2.5) a = 
a 

E[a'] 

where E[a'] is defined as 

E[a'] 
H 

H 
.- 1 

1/10 

p(H)  dH (2.6) 

where H is the wave height function at a fixed location H(t), and p(H) is the Rayleigh 

probability density function of H(t) (Appendix A) defined by Chakrabarti  (1987) as 

p(H) = -—exp 
4m„ 

H; 

8mn 

(2.7) 

and m0 is the variance of the time series.   If the following substitution is made (Sarpkaya 

and Isaacson 1981), 

H1/10= 5.091/ mn 
(2.8) 

Eq. (2.6) may be solved numerically to obtain E[a'J =0.001346. 



CHAPTER HI: Resolution of Incident and Reflected Wave Time Series 

In order to determine experimental wave heights and to calculate envelope 

exceedance coefficients, the incident time series must be known.  Because of reflection 

from models in a 2-dimensional wave channel, a method to resolve the incident and 

reflected random wave time series from wave gauges must be used.   Bad data points in 

wave records caused by wave gauge malfunction are smoothed using the FORTRAN 

program CLEANREC  that employs a smoothing spline package developed by H. J. 

Woltring (1986).   A Fast Fourier Transform (FFT) analysis is used to compute the raw 

wave spectrum from which the incident and reflected random wave time series may be 

determined.    Goda and Suzuki (1976)   modified a method developed by Thornton and 

Calhoun (1972) to resolve the incident and reflected wave spectra from wave gauges 

spatially separated   by a distance Af (see Fig. 3.1). 
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Figure 3.1 - Definition Sketch for two wave gauges 



Kimura (1985) and Fassardi (1993) extended the Goda and Suzuki algorithm to 

include wave phases so that incident and reflected time series could be resolved. 

Goda and Suzuki (1976) analyzed two simultaneous  wave records recorded by 

closely spaced wave gauges aligned in the direction of wave propagation  by an FFT.  If 

the incident TJ and reflected f random wave time series at the i* wave gauge at frequency 

co are given by 

77;= a cos(kx;- cjt+ e) (3-la) 

fi= b cos(kx;+ cot+ /3) (3-lb) 

then the wave profile at the i"1 wave gauge may be expressed as 

(v-+ f),     ^ = A.coscot+ B.sinwt (3.2) V ' 1 J I' (X =   X) 1 1 

where 

Aj= a cosi/^ b cos^R (3.3a) 

Bj= a sin^j- b sin^R (3-3b) 

A2= a cos(kA£ + ^)+ b cos(kA£ + ^R) (3.3c) 

B2= a sin(kA£ + ^)- b sin(kA£ + t/g (3.3d) 

where the spatial phases of the incident and reflected waves, respectively, are defined as 

\P= kXj+ e (3.4a) 

^R= kx,+ ß (3.4b) 

x2= xt+ A£ (3.4c) 

and X! and x2 are the wave gauge positions as shown in Figure 3.1. The coefficients A; 
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and B; may be related to the complex-valued FFT coefficient X by (Dean and Dalrymple 

1984) 

X- ^Jh (3.5) 

where j= J- 1   .  Goda and Suzuki (1976) solve Eqs. (3.3) simultaneously for estimates 

of the amplitudes  a and b listed in Table 3.1. 

For irregular waves, the time series are the superposition  of many wave 

components  given by Eqs. (3.1). Because Eqs. (3.3) apply to each Fourier component in 

an irregular wave record, linear superposition  may be used to resolve time series from a 

spectrum of Fourier components   (Goda 1985). Goda and Suzuki (1976) observed that 

spectral estimates diverged (toward infinity) near frequencies  satisfying the condition 

kAE=mr for n=0,l,2,..., because the term   | sin kA£ | in the denominator  of the 

equations  for the amplitudes a and b in Table 3.1 becomes small and errors from noise 

are amplified.   Therefore, the wave gauge spacing A? determined   the frequency limits of 

a band pass filter from which the waves could be separated  into incident and reflected 

time series.   The wave amplitudes a and b could be resolved effectively for the interval 

0.l7r<kA£<0.97r. Goda and Suzuki (1976) recommended   the following effective band 

pass limits for experimental  conditions: 

0-05L     <A£<0.45L . (3.6a) max mm 

where Lmax and Lmin denote the wavelengths corresponding  to the lower (f^) and upper 

(f«n»x) frequency limits, respectively, of the band pass filter.   Goda and Suzuki (1976) note 

11 



that the effective range may be taken slightly wider than given in Eq. (3.6a) such that 

0.031^ < &l < 0.45^ (3.6b) 

Goda and Suzuki (1976) also recommended   that the wave gauges be located at least one 

wavelength away from both the breakwater toe and the wave generator. 

Kimura (1985) extended the Goda and Suzuki algorithm to include situations 

where each incident wave component in the Fourier spectrum results in a different 

reflection coefficient from the structure.   Kimura (1985) defined incident and reflected 

wave profiles by Eqs. (3.1), and the spatial phases by Eqs. (3.4a,b). Eqs. (3.1) are similar 

to Kimura's Eqs. (9 & 12) on pages 62-63 (1985) if the sign of the temporal term is 

changed from minus to plus in his Eq. (12).  Kimura (1985) also solved for the spatial 

wave phases defined in Eqs. (3.4a,b). Values for a, b, &, and ^R may be calculated using 

the equations listed in Table 3.1 for Kimura.   To improve the resolution of incident and 

reflected waves, Kimura recommended   a slightly more conservative data window of 

0.15L     <A£<0.35L. (3-7) 
max nun 

Fassardi (1993) followed the approach of Kimura (1985) to extend the Goda and 

Suzuki algorithm (1976). However, he defined the incident -q and reflected f time series 

at the im wave gauge as 

77.= a cos(kXj- cot- £) (3.8a) 

fi= b cos(kx.+ ut + ß) (3-8b) 

If the spatial phase of the incident and reflected waves, respectively, are defined as 

^= kxr s (3-9a> 
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rather than by Eqs. (3.4a,b), then the amplitudes and spatial phases are given by the 

equations  listed in Table 3.1 for Fassardi (1993).   The only difference between the 

Fassardi and Kimura algorithm is the sign of s in the definition of the incident time 

series phase.   This sign change results in corresponding  sign changes in the Fourier 

coefficients that are now given by 

A,= a cos^,+ b cos^R (3.10a) 

Bj= a si#,+ b sin^R (3.10b) 

A,= a cos(-kA£ + ^,)+ b cos(kA£ + ^R) (3.10c) 

B,= a sin(-kA£+ ^)+ b sin(kA£ + ^R) (3-10d) 

These four equations  are then solved simultaneously  to obtain the equations  for a, b, \j/u 

and ^R listed in Table 3.1 for Fassardi (1993). 

In the experiments documented   by Medina et al. (1994), the Fassardi algorithm 

was used to resolve the incident and reflected time series.   Three sonic wave gauges 

aligned in the direction of wave propagation  were centered   10m from the toe of the 

breakwater  and spatially separated  by A? = 1.22m according to Figure 3.2. 

Clean time series from each gauge were used in the FORTRAN  program 

RECANSYG   to resolve the incident and reflected time series.   RECANSYG   outputs the 

raw time series and spectra resolved from the wave gauge system in Figure 3.2. The 

program computes the time series mean and variance.   As well, it computes the 

reflection coefficient, significant wave height, and mean period from the moments.   The 
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Goda 
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Suzuki 

(1976) 

Kimura 

(1985) 

a = - vA'A.-AxoskAf -B,sinkAf)2 + (B,+A.sinkA^ -B.coskA £)2 

2 | sinkAf | v   ^     * ' 2     2 ' 

b= - \/(A,-A.coskAf +B,sinkAif + (B7-A,sinkA£ -B.coskAif 
2 | sinkAf | v    2     ' ' 2     l 

a= - */(A, -A.coskAf -B,sinkA £)2 + (B, +A.sinkA£ -B.coskA£)2 

2 | sinkA£ | v    2     ' ' '    ^ 2     i 

b= - i/(A,-A.coskA£ +B.sinkA£)2 + (B2-A1sinkA£ -B^oskAf)2 

2 I sinkAf | v 

^j= tan"1 

^R= tan"1 

- A-J+ AjCOskAf + BjSinkA^ 

B2+ AjSinkAf- BjCOskA^ 

- A2+ AjCOskAf - BjSinkA£ 

- B2+ AjSinkA^ BjCoskAf 

Fas sard i 

(1993) 
2 I sinkA^ | 

(A2-A,coskAf +B1sinkA£)2 + (B2-A,sinkA£ -B^oskAf)2 

b= - </(A,-A,coskA£ -B,sinkAn2 + (B,+A,sinkA£ -B.coskAI)2 

2 I sinkA£ | v    2     ' ' '    ^ 2     1 1 

$ = tan' 

^R= tan" 

- A2+ AjCoskA^- B,sinkA£ 

B2- A,sinkA£- B,coskA£ 

- A2+ AjCoskA^ + BjSinkA£ 

B2+ AjSinkA£- BjCOskAf 

Table 3.1-Summary of incident and reflected wave amplitudes  and phases 
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incident and reflected time series were resolved using Gauges 1 and 2 and Gauges 2 and 

3 so that the algorithm could be verified by duplication.   A sample run is analyzed.   As 

explained in APPENDIX B - Simulation of Sea States, Run E1P1L7 represents  a sea 

state simulated  with the following parameters: 

El = Envelope  1 ; y = 10, a=2.52 

PI = Phase 1 ; <£=2TT/3 

L7 = Height 7 ; HsC7)=0.723 

AC= 1.22m 

A« Mt 
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Gauges     O     O     O 

 > 

SL. 

h=3.05m 
O     O     O 

1        2        3 

y//%yy m%w mmMm 

10m 

Rubble 

Mound 

Breakwater 

Figure 3.2-Sonic Wave Gauge Locations (Fassardi 1993) 

For a small data sample of ten seconds, Figure 3.3 shows how the clean time 

series are phase shifted at each wave gauge station.   Figure 3.4 shows two minutes of the 
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clean time series at Gauges  1 and 2 and the resulting incident and reflected time series 

resolved by the Fassardi (1993) algorithm.   The time series at Gauge 1 is identical to 

that at Gauge 2, except for the phase shift.  The incident and reflected time series 

resolved from Gauges  1 and 2 are plotted on the same scale to show the relative 

magnitude of the incident and reflected wave amplitudes.   The magnitude of the wave 

amplitudes of the reflected time series are about 25% of the incident amplitudes.   Figure 

3.5 shows the composite spectrum at Gauge 2 and the incident and reflected spectra 

resolved from Gauges  1 and 2 and Gauges 2 and 3, respectively.   The spectra in Figure 

3.5 have been smoothed  using the non-statistical  technique Box Car Averaging.   The 

resolved spectra show that the energy in the reflected  spectrum is about 5-10% ofthat in 

the incident spectrum.   Breakwater  reflection of about 25% observed in the time series 

results in the reflected spectral density being 5-10% of the incident spectral density, for 

each frequency component.   The low frequency spike in the spectral density at 

approximately  0.04 Hz is attributed   to a seiche in the wave channel caused by the start- 

up of the wave generator.   The resolved spectra in Figure 3.5 are similar, indicating that 

the Fassardi (1993) algorithm produces the same spectra from different wave gauge 

pairs.   At the truncation  limits of 0.2140 Hz and 0.7644 Hz, the spectral density of the 

incident and reflected  waves begins to diverge because the term   | sin kAf | in the 

denominator   of the equation  for the amplitudes a and b in the Fassardi algorithm 

becomes small.   Further examples of the resolution  of incident and reflected time series 

and spectra from the output of RECANSYG   for the four envelopes discussed in 

APPENDIX  B are included in APPENDIX  C - Time Series and Spectra. 
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Time Series-Run E1P1L7 
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Time  Series -  R.un  EX^PXI^V 
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Composite  Spectrum -  Run  E1P1L7 
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SUMMARY AND CONCLUSIONS 

Multiple failures of existing rubble mound breakwaters  designed with the Shore 

Protection  Manual's (1984) methodology have indicated a need to improve the design 

procedures  for rubble mound structures.   Many structural and environmental 

characteristics   such as armor grading, structure permeability, wave period, storm 

duration, spectral shape, and wave groupiness have secondary effects on breakwater 

stability.   Irregular waves generated  solely from an energy spectrum with random phases 

do not accurately model real wave trains, and the succession of wave heights or 

groupiness is an important factor in the design of rubble mound breakwaters.   The 

magnitude of the energy flux given by the envelope exceedance coefficient a is one way 

of quantifying the groupiness of a wave time series.   Intermediate   scale wave channel 

studies at Oregon State University documented  by Medina et al. (1990), Fassardi (1993), 

and Medina et al. (1994) have demonstrated   that the envelope exceedance coefficient a 

may be used to correlate wave groupiness with breakwater damage.   No significant 

correlation  was found between the peak enhancement   factor 7 and rubble mound 

breakwater  stability.   Furthermore,  the constant phase shift 4> applied to the time series 

for each wave envelope A(x,t) did not effect the armor damage. 

To calculate the envelope exceedance coefficient a from the incident wave time 

series, either the Kimura (1985) or the Fassardi (1993) algorithm may be used to resolve 

the incident and reflected waves from closely spaced wave gauges.   The Fassardi (1993) 

algorithm, used by Medina et al. (1990) in their experiments at Oregon State University 

20 



is different from the Kimura (1985) algorithm by the sign of the random phase angle of 

the incident time series (Eq. 3.1a & 3.8a). This sign change does not have any effect on 

the value of a or the interpretation   of the results.   For the frequency range given by 

Table B.l,the Fassardi (1993) algorithm effectively resolves incident and reflected wave 

time series from closely spaced wave gauges aligned in the direction of wave 

propagation.    Some divergence of the incident and reflected wave spectra is observed 

near the cut off frequencies of the truncated  spectra. 

Since the wave resolution algorithms presented  only resolve wave components in 

the frequency range determined   by the wave gauge spacing, the spectra used to simulate 

the time series for the laboratory experiments were truncated  accordingly.   The variance 

of the full spectra was preserved for the truncated  spectra by considering the squared 

significant wave height ratio given by Eq. (B.6).  For the physical simulations performed 

by Medina et al. (1990), phase spectra resulting in the highest and lowest values for the 

envelope exceedance coefficient a were chosen for each amplitude spectra.   Significant 

wave heights of consecutive runs were increased in discrete increments such that the 

stability numbers for the two armor rock sizes were equal in consecutive runs. 
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APPENDIX A: Rayleigh Distribution 

The Rayleigh probability density function (pdf) for the wave amplitudes a (: 

H/2) is given by 

P(a) = — exp 
ttR 

- -| 
r            -| 2 

1 a 
2 aK 

U(a)     ;     aR>0 
(A. la) 

where aR = Rayleigh parameter   (Hoffman and Karst 1975) and U(a)  = Heaviside step 

function.   The Rayleigh cumulative distribution function (cdf) for wave amplitudes is 

~ -] 

r              -I 2 

1 a 
2 ttR 

— " 
r         -] 2 

T a —   , 
4 Ma 

P(a) = 1 - exp    --   —        U(a) 

The following 4 forms of (A. la) may be found: 

p(a) = _-exp 
2M 

/TTN       2H 
P(H) = —j-exp 

H 

p(a) = —exp 
rn 

p(H) = -—exp 
4m 

aR>0 

" *-] 
- 2 

H 
H rms 

_        U(a)     ;     ^>0 

U(H)     ;     H    >0 ^        * ' rms 

_ 1 
2 

- 
a 2 

l/röT 
U(a)     ;     mo>0 

- -i 

1 [     H     1 
2 

2 
2 urn 

Y     o 

(A. lb) 

(A. 2a) 

(A.2b) 

(A. 2c) 

U(H)     ;     m >0 (A-2d) 

where ^4 = average of the amplitude a; Hms = root-mean-square   wave height; and m0 = 
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variance of the time series for the water surface elevation 7?(t).  When the random 

variable a in (A.2) is scaled by the standard deviation of the time series JnT, then the 

following change of variables gives: 

d£ 

PG) =p(a)ii 
d£ 

da 

P(f) = exp 
2m 

p(?) = £exp 
2 

U(f) (A.2e) 

Eqs. (A.2) may be derived from (A.la) by solving for the generic Rayleigh parameter  aR. 

The percent or fraction of wave amplitudes greater than wave amplitude 

a,, (= Hn/2), may be computed from (A.la) by 

n = Jp(a) da 

— -] 
f                 - 2 

1 a n 

2 aR 

(A.3) 

and the natural logarithm of (A.3) gives 
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-i. = \/-21n(n) (A.4) 

where 0 < n < 1. The average wave amplitude greater than a   may be determined  from 

an f p(a)da =  fap(a)da 

that may be integrated  by parts to obtain 

an(n) = naRi/-21n(n)   +   [ exp    -_    — 
J 2     a„ 

~ -] 

r       i2 

1 a 
2 «R 

da 

by (A.3) and (A.4).  Finally, integration gives 

1 = 7-21n(n)   + 1 
n 

7T 1-erf (V-ln(n)) 

= V~21n(n)   + | erfc(v/-ln(n)) 

(A. 5a) 

(A.5b) 

where erf( •) = the error function and erfc( •) = complementary  error function 

(Kreyszig 1983).  In order to relate the Rayleigh parameter  aR to the average /t„ set n = 

1 in Eq. (A.5) and 

a        a, 
=   jK 

ttR           aR           ttR > 

1  
ttR  = Ma 

2 
■K 

X 

(A.6) 

and substitution  into (A. la) gives (A.2a). 

24 



Alternatively, (A.5) may be derived directly from special functions according to 

CO 00 

än|p(a)da = Jap(a)da 

= a„ 1  -fiv 
2 

3        a" 

2       2a 

where the generalized incomplete Gamma function r(a,Zo,Zi) (Wolfram 1991) is defined 

as 

r(a,z0,Zl) = r(a,z0) - r(a)Zl) 

and the incomplete Gamma function T(a,z) (Wolfram 1991) is defined as 
CO 

r(a,z) = r(a) - G(a,z) =  f ta"!exp(-t) dt 

G(a,z) t4_1exp(-t)dt 

Substituting for r(a,z0,Zi) 

,0 
2 

-x    a 
•J      n 

22ai 
f 3 

2 

24 

i/Texp(-t)dt 

f i/Texp(-t)dt 

2^1 

W-ln(n)   + ±L 
2 

1-erf (\/-ln(n) ) 

n^-ln(n)   + llerfc(^-ln(n) ) 
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giving (A.5). 

To relate the Rayleigh parameter  aK to HMI make the following change of 

variables in (A. la): 

and 

giving 

y = a2     ;     dy = 2ada = 2/yda 

p(a)da = p(y)dy 

P(y) =P(a)-^ 

.exp 
2 a 

_ y 
2 a; 

U(y) 

(A.7) 

The average of a2 may now be computed  from 

a2   = y rms -* 
yp(y)dy 

■o 2CCR 

2a\ 

_exp 
2 a2 

dy 

and the Rayleigh parameter  aR may be defined by 

(A. 8) 
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» « 

H. 
a. 

rms rms 

VI      2v/I 
= ^ 

(A.9) 

Substituting (A.6) and (A.9) into (A.5b) gives 

-Ü. = 2 
In <£l    + ierfc(v/-ln(n)) 

x n 

(A. 10a) 

JL = V-ln(n)   + ^erfc(v/-ln(n)) 
H 2n 

(A.10b) 

H V-81n(n)    + Ülefrc(V-ln(n)') 
n 

(A. 10c) 

The significant wave height H5 or average of the highest 1/3 wave heights H1/3 may be 

computed  from (A.5b) for n = 1/3 (dropping the overbar average notation)  according to 

5*   = A = 2.00215 (A-lla) 
2aR       2aR 

2aT 
H.(H10) 
2.00215 

(A.lib) 

Substituting  (A.lib) into (A.5b) gives 

27 



H 

H(H1/3) 
= (2.00215) -n v/-21n(n)   + 1 erfc(v/-ln(n)) 

(A. 12) 

To find the mode (or most probable)  value of a^^ (= B^^/2), the maximum value of 

(A. la) occurs when 

dp(a)   = n     . 
da 

a = a mode 
(A. 13) 

giving 

amodc    =   aR J        Hmode    =20iR 
(A.14a,b) 

and 

mode 

^ 

2_ 
■K 

H mode 

H 
1 

v/2" 

(A.15a,b) 

H mode 
2    ; 

H mode 

H.(Hlfl) 
(2.00215) -i (A.15c,d) 

The mean or median of a occurs when P(a) = 0.5 in (A. lb).  The natural logarithm of 

(A. lb) forP(aracd)  =0.5 is 

med 

<*„ 
v/21n(2) (A. 16) 
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giving 

mcd 41n(2) H 

H 
mcd = v/ln(2) 

(A.17a,b) 

H mcd 

\f 
= v/81n(2) 

Hmcd     _ ^2111(2) 

Hs(H1/3) 2.0015 
(A.17c,d) 

These results are summarized in Table A.l 

height H H 
H rms 

H 

Jm 
Y     ° 

H 

K H(H1/3) 

mode 

•> 

8 
i 2.0 (2.00215)-1 

H^CP-1/2) 
4 ln(2) 

■K 

yin(2) v/81n(2) v/21n(2) 
2.00215 

Hj ( = mean ) 2.0 

2 
/2~7 

2.00215 

H(H1/3) 3.19497 1.41573 4.0043 1.0 

■"■l/io 
4.06198 1.79992 5.09094 1.27137 

rr 
•"■l/ioo 

5.32423 2.35924 6.67293 1.66644 

Table A.l-Rayleigh distributed wave height relationships 
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APPENDIX B: Simulation of Sea States 

In order to correctly describe wave groups in laboratory studies, the incident wave 

train must be known.   An algorithm developed at Oregon State University by Fassardi 

(1993) was used to resolve the incident and reflected wave trains in a finite bandwidth 

determined  by the wave gauge spacing A£ (Table 3.1). One broad (7 = 1) and one 

narrow (7 = 10) truncated Goda-JONSWAP   spectrum (Goda 1985) were simulated 

according to 'e> 

S,(0= c,HRH;       > exp[-1.25(.i)-<]Y      T- (B-1) 
p 

c.= 
0.0624 

0.230+ O.O3367- 0-185(1.9+ 7)-1 

0.07 : f<f 
0.09 : f>f 

p 

(B.2) 

(B.3) 

for fmk<f<fmax, where fp is the peak frequency, HR is the squared significant wave height 

ratio defined in Eq. (B.6), and HSitnioc is the significant wave height of the truncated 

spectrum.   Eq. (B.l) is different than Eq. (30) in Fassardi (1993) in that Fassardi (1993) 

does not document the use of the constant ct defined by Eq. (B.2).  The spectra were 

truncated  according to 'o 

f . =0.7f nun p (R4) 

f   =2.5f m»x p 
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To define the truncated spectra and preserve the variance of the full spectra, Eq. 

(B.l) includes the dimensionless coefficient HR.  If the significant wave height is given in 

terms of the variance (Table A.l) by 

(B.5) H =4.0043Jm 

then the squared significant wave height ratio HR may be defined as 

TT _ H»2Mi (B.6) 

s.trunc 

where HIiMi is the significant wave height of the full spectra.   For peak frequencies 

between 0.1 and 0.5 Hz, the average dimensionless variance preserving coefficients for 

7 = 1 and 7 = 10are HR=1.0375and HR=1.0133 respectively. 

The mean frequency of the truncated  spectra defined by the first and zeroeth 

spectral moments 

! = ^i (B.7) 
m„ 

was held constant at ?= 0.3333 Hz such that the peak frequency of the truncated  spectra 

could be computed from the frequency ratio 

f =_i 
R    T 

f- (B.8) 

For peak frequencies between 0.1 and 0.5 Hz, the average frequency ratios were 
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fR=0.8115 and fR=0.9173 for 7 = 1 and 7=10, respectively.   Accordingly, the peak 

frequencies  used to simulate the truncated   spectra from Eq. (B.l) were fp=0.2705Hz 

and fp=0.3058Hz for 7 = 1 and 7 = 10, respectively. 

The wave gauge spacing defined by Figure 3.1 was 1.22m, and the water depth 

was 3.05m (Fassardi  1993).  If the band pass filter limits proposed by Goda and Suzuki 

(1976) given by Eq. (3.6a) are used, and the linear wave theory dispersion relationship  is 

given by 

CJ: 

> 

2TT     .  27fh (B.9) 
o—tanh 
ÖL L 

the minimum and maximum resolvable frequencies  for A? = 1.22m are fmIn=0.1299Hz 

and fmax=0.7589Hz.  For cases where 7 = 1, the minimum and maximum frequencies of 

the truncated   spectra are fmin=0.1894Hz and fm3X=0.6762 Hz.  For 7 = 10, the minimum 

and maximum frequencies of the truncated   spectra are fm!n=0.2140Hz and fm«=0.7644 

Hz.   These frequency limits for the truncated   spectra are reasonably close to those 

resolvable by wave gauges spatially separated   by Af = 1.22m. 

Different phase spectra produce time series with different wave grouping 

characteristics.    Accordingly, time series we're synthesized using two different phase 

spectra for each of the truncated  Goda-JONSWAP   spectra given by Eq. (B.l) with 

7 = l,10and ?=0.3333Hz.  The phase spectra were chosen from 100 random 

Deterministic  Spectral Amplitude (DSA) simulations for each amplitude spectra.   Values 

of a were calculated from each DSA simulated  time series according to Eq. (2.5). For 
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each 7, the phase spectra that produced  the wave envelope A(x,t) with the highest and 

lowest wave height variability characterized   by a were chosen for the physical 

simulations.    The parameters  used for wave simulation are summarized  in Table B.l. 

7 Ci HR fR fp 

resolvable for 
A£ = 1.22m 

from Eq. (3.6a) f . f 
Low a 
from 
DSA 

High a 
from 
DSA 

f . 
■"■mm 

f 'max 

1 0.3123 1.0375 0.8115 0.2705 0.1299 0.7589 0.1894 0.6762 0.51 2.18 

10 0.1134 1.0133 0.9173 0.3058 0.1299 0.7589 0.2140 0.7644 0.23 2.52 

Table B.l-Summary of simulation parameters   for A£ = 1.22m and h=3.05m 
(frequencies  in Hz) 

Realizations   with the same envelope, but different phase-shifted  wave profiles are 

given by (Medina et al. 1994) 

^(x.0 = ]C amcos[kx-ut-(£+<£)] (B.10) 
m=l 

where 0 is a constant phase shift applied to all M wave components.   Three different 

phase shifted realizations  (^=0,2-^/3, 4TT/3) and the replicate (4>=2ir) for each of the 

four wave envelopes were tested to determine  if realizations  shifted by a constant phase 

produce different levels of damage.   For each y, A(x,t), and constant phase shift <f>, a 

sequence of time series were tested with increasing significant wave heights. 
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The breakwater  model tested by Medina et al. (1990) was divided in the direction 

of wave propagation  into two sides with a different armor layer rock size (viz., WL= 128.5 

N and Ws=99.1 N) on each side.  The monochromatic   wave height corresponding  to the 

zero damage condition (SPM 1984) can be calculated  from 

E 

WK, P: cote 

p< 

(B.ll) 

where W is the median value of the mass distribution  of rocks in the armor; KD is the 

stability coefficient; 9 is the angle of the breakwater  slope measured  from horizontal, 

and pr and pw are the weight densities of the rocks and water, respectively.   Solving Eq. 

(B.ll) numerically for the small rock size (Ws=99.1 N) yields a monochromatic  wave 

height of H=0.55m for the zero damage condition.   Breakwater  model and armor rock 

characteristics  are given in Table B.2. 

WL(N) WS(N) KD pr (kN/m3) pw (kN/m3) cot9 

128.5 99.1 4 27.4 9.8 2 

Table B.2 - Summary of breakwater  model characteristics  (Fassardi  1993) 

For the zero damage condition, if the representative design wave height for a 

random sea is H1/U), then the design significant wave height for the small rock size is 

determined   (Table A. 1) by 
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Hs=.°-55m = 0.43m for W =99.1 N 5   1.27137 s (B.12) 

An empirically derived number which controls the stability of the armor layer (Medina et 

al. 1990) is given by 

N = 
pH: 
r
r      s 

w fL-l 
(B.13) 

where Ns is the stability number, and Hs is the design significant wave height.   The 

significant wave heights in the physical simulations were increased in discrete increments 

such that the stability numbers given by Eq. (B.13) for the large (WJ and small (Ws) 

rocks were equal in consecutive runs.   Seven significant wave heights were tested for 

each of the sixteen realizations.   The significant wave heights varied from the design 

significant wave height of the small rock size to the maximum wave height, avoiding 

breaking.   From Eq. (B.13), the significant wave height of the km run is given by 

»..00 = 0.43 5 
W, 

k-l 

k= 1,2, . . . ,7 (B.14) 

Thus, twenty-eight realizations  of four phases and seven wave heights were 

simulated for each of four target envelopes shown in Figure B.l. For each realization, 

runs of approximately 30 minutes long containing N=215=32768 points sampled at 

At=0.06 seconds were simulated. 
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APPENDIX C:  Wave Time Series and Spectra 

Section Page 

1. Run E1P1L7 38 

2. Run E2P1L7 40 

3. Run E3P1L7 45 

4. Run E4P1L7 50 
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RESOLVING   INCIDENT AND REFLECTED   TRAINS FOR RECORD:    elpll7 

Gauge No. : 1 
Raw Time Series Mean Value :    0.009327    Variance : 0.040746 

Gauge No. : 2 
Raw Time Series Mean Value :    0.010709     Variance 0.038375 

Gauge No. : 3 
Raw Time Series Mean Value :    0.006861     Variance 0.036691 

RESOLVED   INCIDENT AND REFLECTED   WAVES 

Analysis from Gauges 2 and 3 

Incident wave Spectrum's Variance:     0.032890 
Reflected  wave Spectrum's Variance:     0.001678 

Breakwater's reflection coefficient :   0.2259 
Incident significant wave height :  0.7261 
Reflected  significant wave height :  0.1640 
Mean Period (T01) from incident spectrum  : 3.065 

Incident wave train, Mean and Variance from TS(2,3) 
TS Mean :    0.000000 TS Variance :    0.032890 

Reflected   wave train, Mean and Variance from TS(2,3) 
TS Mean :    0.000000 TS Variance :    0.001678 

Analysis from Gauges  1 and 2 

Incident wave Spectrum's Variance:     0.033244 
Reflected  wave Spectrum's Variance:     0.002225 

Breakwater's reflection coefficient :  0.2587 
Incident significant wave height :  0.7300 
Reflected  significant wave height :  0.1889 
Mean Period (T01) from incident spectrum  : 3.074 

Incident wave train, Mean and Variance from TS(1,2) 
TS Mean :    0.000000 TS Variance  :    0.033244 

Reflected  wave train, Mean and Variance from TS(1,2) 
TS Mean :    0.000000 TS Variance  :    0.002225 
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RESOLVING   INCIDENT AND REFLECTED   TRAINS FOR RECORD:    e2p!17 

Gauge No. : 1 
Raw Time Series Mean Value :    0.009919    Variance 0.039530 

Gauge No. : 2 
Raw Time Series Mean Value :    0.003559    Variance 0.041591 

Gauge No. : 3 
Raw Time Series Mean Value :  -0.010094    Variance 

RESOLVED   INCIDENT  AND REFLECTED   WAVES 

0.041708 

Analysis from Gauges 2 and 3 

Incident wave Spectrum's Variance:     0.031342 
Reflected  wave Spectrum's Variance:     0.002484 

Breakwater's reflection coefficient :  0.2815 
Incident significant wave height :  0.7089 
Reflected  significant wave height :  0.1996 
Mean Period (T01) from incident spectrum  :    3.245 

Incident wave train, Mean and Variance from TS(2,3) 
TS Mean :    0.000000 TS Variance :    0.031342 

Reflected  wave train, Mean and Variance from TS(2,3) 
TS Mean :    0.000000 TS Variance  :    0.002484 

Analysis from Gauges  1 and 2 

Incident wave Spectrum's Variance:     0.033780 
Reflected  wave Spectrum's Variance:     0.002935 

Breakwater's reflection coefficient :  0.2948 
Incident significant wave height :  0.7359 
Reflected   significant wave height :  0.2169 
Mean Period (T01) from incident spectrum  :    3.244 

Incident wave train, Mean and Variance from TS(1,2) 
TS Mean :    0.000000 TS Variance :    0.033780 

Reflected  wave train, Mean and Variance from TS(1,2) 
TS Mean :    0.000000 TS Variance :    0.002935 
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RESOLVING   INCIDENT AND REFLECTED   TRAINS FOR RECORD:    e3pll7 

Gauge No. : 1 
Raw Time Series Mean Value :    0.011743     Variance : 0.041173 

Gauge No. : 2 
Raw Time Series Mean Value :    0.002714     Variance : 0.038172 

Gauge No. : 3 
Raw Time Series Mean Value :  -0.002450    Variance : 0.038333 

RESOLVED   INCIDENT  AND REFLECTED   WAVES 

Analysis from Gauges 2 and 3 

Incident wave Spectrum's Variance:     0.035032 
Reflected  wave Spectrum's Variance:     0.001793 

Breakwater's reflection coefficient :  0.2262 
Incident significant wave height :  0.7494 
Reflected   significant wave height :  0.1695 
Mean Period (T01) from incident spectrum  :    3.056 

Incident wave train,. Mean and Variance from TS(2,3) 
TS Mean  :    0.000000 TS Variance  :    0.035032 

Reflected   wave train, Mean and Variance from TS(2,3) 
TS Mean :    0.000000 TS Variance  :    0.001793 

Analysis from Gauges  1 and 2 

Incident wave Spectrum's Variance:     0.034591 
Reflected   wave Spectrum's Variance:     0.002552 

Breakwater's reflection coefficient :  0.2716 
Incident significant wave height :   0.7447 
Reflected   significant wave height :  0.2023 
Mean Period (T01) from incident spectrum  :    3.078 

Incident wave train, Mean and Variance from TS(1,2) 
TS Mean :    0.000000 TS Variance  :    0.034591 

Reflected  wave train, Mean and Variance from TS(1,2) 
TS Mean :    0.000000 TS Variance :    0.002552 
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Time Series -  R-«n E3P1L7 
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Composite  Spectrum -  R-un E3P1L7 
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Time Series - Run E3P1L7 
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RESOLVING   INCIDENT AND REFLECTED   TRAINS FOR RECORD:    e4p!17 

Gauge No. : 1 
Raw Time Series Mean Value :    0.015713     Variance 0.043060 

Gauge No. : 2 
Raw Time Series Mean Value :    0.025821     Variance 0.041359 

Gauge No. : 3 
Raw Time Series Mean Value :    0.029771     Variance 0.044257 

RESOLVED   INCIDENT  AND REFLECTED   WAVES 

Analysis from Gauges 2 and 3 

Incident wave Spectrum's Variance:     0.036691 
Reflected   wave Spectrum's Variance:     0.002226 

Breakwater's reflection coefficient :   0.2463 
Incident significant wave height :   0.7670 
Reflected   significant wave height :   0.1889 
Mean Period (T01) from incident spectrum  :    3.206 

Incident wave train, Mean and Variance from TS(2,3) 
TS Mean  :    0.000000 TS Variance  :    0.036691 

Reflected   wave train, Mean and Variance from TS(2,3) 
TS Mean :    0.000000 TS Variance :    0.002226 

Analysis from Gauges  1 and 2 

Incident wave Spectrum's Variance:     0.036596 
Reflected  wave Spectrum's Variance:     0.002472 

Breakwater's reflection coefficient :  0.2599 
Incident significant wave height :  0.7660 
Reflected   significant wave height :   0.1991 
Mean Period (T01) from incident spectrum  : 3.212 

Incident wave train, Mean and Variance from TS(1,2) 
TS Mean  :    0.000000 TS Variance  :    0.036595 

Reflected   wave train, Mean and Variance from TS(1,2) 
TS Mean  :    0.000000 TS Variance  :    0.002472 
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Time  Series -  Run  E4P1L7 
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Composite  Spectrum -  K-iirx  E-4P1L7 
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Time Series-Run E4P1L7 
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APPENDIX E:   Notation 

A(x,t) = wave envelope function 

A; = FFT coefficient at Ith wave gauge 

a^ = the median of a 

a^. = most probable value of a 

ä = the average wave amplitude greater than a^ 

ams = root mean square wave amplitude 

a = incident wave amplitude 

B; = FFT coefficient at im wave gauge 

b = reflected wave amplitude 

C[ = Goda-JONSWAP   spectrum parameter   defined in Eq. (B.2) 

da = wave amplitude interval 

dH = wave height interval 

d£ = interval of £ defined in Eq. (A.2e) 

E(a') = expected value of a' 

erf( •) = error function of ( •) 

erfc( •) = complementary   error function of ( •) 

f = wave frequency 

f = mean frequency of spectrum 

fnuxonin) = maximum (minimum) cut-off frequency 
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f = peak frequency of spectrum 

fR = frequency ratio given by Eq. (B.8) 

G(a,z) = gamma function from APP. A 

g = gravitational  constant 

H = wave height 

H(t) = wave height function at a fixed location 

H(x,t) = wave height function 

H(nAt) = discrete wave height function at x=0 

HmKi = the median of H 

Hmode = the most probable value of H 

HR = squared  significant wave height ratio given by Eq. (B.5) 

Hm! = root mean square wave height 

Hs = significant wave height = H1/3 

Hs m = significant wave height of full spectrum 

Hs(k) = significant wave height of the km run 

Hsmjnc = significant wave height of truncated  spectrum 

Ht = average of the wave heights 

Hj/3 = average of the highest one-third of the wave heights 

Hi/io = average of the highest one-tenth  of the wave heights 

HI/10o = average of the highest one-hundredth   of the wave heights 

h = water depth 

j -■FT 
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KD = armor layer stability coefficient 

k (=27r/L)      = wave number 

L = wave length 

T     , ., = maximum (minimum)  wave length 

mo = variance of the time series, zero-th spectral moment 

m = first spectral moment 

n = percent or fraction of wave amplitudes greater than a,, 

N = number of data points 

2sfs = stability number defined in Eq. (B.12) 

P( .) = Rayleigh cumulative distribution  function of (•) 

p( .) = Rayleigh probability density function of (•) 

S (f) = Goda-JONSWAP   spectrum defined by Eq. (B.l) 

T = wave period 

t = time 

U( •) = Heaviside step function of ( •) 

W = the median value of the mass distribution  of rocks in the armor 

WL = large armor layer rock size 

Ws = small armor layer rock size 

X = complex valued FFT coefficient 

x. = position of i* wave gauge from wave maker 

y = change of variable from Eq. (A.7) 

a = envelope exceedance coefficient 

60 



a' = magnitude of the variation of wave energy above H1/10 

aR = Rayleigh parameter 

ß = reflected wave phase 

r(a,z) = incomplete gamma function from APP. A 

r(a}Zo,z,) = generalized  incomplete gamma function from APP. A 

y = peak enhancement   factor 

AHn = normalized  measure of the variation of wave height 

A£ = wave gauge spacing 

At = sampling time interval 

g = incident wave phase 

f. = reflected  time series at i* wave gauge 

7j(x,t) = sea surface elevation 

7j; = incident time series at i* wave gauge 

9 = angle of the breakwater  slope measured  from horizontal 

^a = average of the amplitude a 

£ = change of variable from Eq. (A.2e) 

pr = weight density of rock 

o — weight density of water 

a ~ Goda-JONSWAP   spectrum parameter  defined in Eq. (B.3) 

(j) = constant phase shift applied to each realization 

\i/m = incident (reflected)  spatial wave phase 

co (=27r/T)      = circular wave frequency 
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